Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7988, 2024 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580715

RESUMO

In the human genome, heterozygous sites refer to genomic positions with a different allele or nucleotide variant on the maternal and paternal chromosomes. Resolving these allelic differences by chromosomal copy, also known as phasing, is achievable on a short-read sequencer when using a library preparation method that captures long-range genomic information. TELL-Seq is a library preparation that captures long-range genomic information with the aid of molecular identifiers (barcodes). The same barcode is used to tag the reads derived from the same long DNA fragment within a range of up to 200 kilobases (kb), generating linked-reads. This strategy can be used to phase an entire genome. Here, we introduce a TELL-Seq protocol developed for targeted applications, enabling the phasing of enriched loci of varying sizes, purity levels, and heterozygosity. To validate this protocol, we phased 2-200 kb loci enriched with different methods: CRISPR/Cas9-mediated excision coupled with pulse-field electrophoresis for the longest fragments, CRISPR/Cas9-mediated protection from exonuclease digestion for mid-size fragments, and long PCR for the shortest fragments. All selected loci have known clinical relevance: BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, PMS2, SCN5A-SCN10A, and PKI3CA. Collectively, the analyses show that TELL-Seq can accurately phase 2-200 kb targets using a short-read sequencer.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Análise de Sequência de DNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , DNA/genética , Genoma Humano
2.
Mol Psychiatry ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129659

RESUMO

Three Prime Repair Exonuclease 1 (TREX1) gene mutations have been associated with Aicardi-Goutières Syndrome (AGS) - a rare, severe pediatric autoimmune disorder that primarily affects the brain and has a poorly understood etiology. Microglia are brain-resident macrophages indispensable for brain development and implicated in multiple neuroinflammatory diseases. However, the role of TREX1 - a DNase that cleaves cytosolic nucleic acids, preventing viral- and autoimmune-related inflammatory responses - in microglia biology remains to be elucidated. Here, we leverage a model of human embryonic stem cell (hESC)-derived engineered microglia-like cells, bulk, and single-cell transcriptomics, optical and transmission electron microscopy, and three-month-old assembloids composed of microglia and oligodendrocyte-containing organoids to interrogate TREX1 functions in human microglia. Our analyses suggest that TREX1 influences cholesterol metabolism, leading to an active microglial morphology with increased phagocytosis in the absence of TREX1. Notably, regulating cholesterol metabolism with an HMG-CoA reductase inhibitor, FDA-approved atorvastatin, rescues these microglial phenotypes. Functionally, TREX1 in microglia is necessary for the transition from gliogenic intermediate progenitors known as pre-oligodendrocyte precursor cells (pre-OPCs) to precursors of the oligodendrocyte lineage known as OPCs, impairing oligodendrogenesis in favor of astrogliogenesis in human assembloids. Together, these results suggest routes for therapeutic intervention in pathologies such as AGS based on microglia-specific molecular and cellular mechanisms.

3.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945366

RESUMO

In the human genome, heterozygous sites are genomic positions with different alleles inherited from each parent. On average, there is a heterozygous site every 1-2 kilobases (kb). Resolving whether two alleles in neighboring heterozygous positions are physically linked-that is, phased-is possible with a short-read sequencer if the sequencing library captures long-range information. TELL-Seq is a library preparation method based on millions of barcoded micro-sized beads that enables instrument-free phasing of a whole human genome in a single PCR tube. TELL-Seq incorporates a unique molecular identifier (barcode) to the short reads generated from the same high-molecular-weight (HMW) DNA fragment (known as 'linked-reads'). However, genome-scale TELL-Seq is not cost-effective for applications focusing on a single locus or a few loci. Here, we present an optimized TELL-Seq protocol that enables the cost-effective phasing of enriched loci (targets) of varying sizes, purity levels, and heterozygosity. Targeted TELL-Seq maximizes linked-read efficiency and library yield while minimizing input requirements, fragment collisions on microbeads, and sequencing burden. To validate the targeted protocol, we phased seven 180-200 kb loci enriched by CRISPR/Cas9-mediated excision coupled with pulse-field electrophoresis, four 20 kb loci enriched by CRISPR/Cas9-mediated protection from exonuclease digestion, and six 2-13 kb loci amplified by PCR. The selected targets have clinical and research relevance (BRCA1, BRCA2, MLH1, MSH2, MSH6, APC, PMS2, SCN5A-SCN10A, and PKI3CA). These analyses reveal that targeted TELL-Seq provides a reliable way of phasing allelic variants within targets (2-200 kb in length) with the low cost and high accuracy of short-read sequencing.

4.
Immun Ageing ; 18(1): 45, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34879879

RESUMO

BACKGROUND: Studies have shown that the decrease of osteogenic differentiation of bone marrow mesenchymal stem cells (MSC) is an important mechanism of osteoporosis. The object of this study was to explore the role and mechanism of microRNA miR-425-5p in the differentiation of MSC. METHODS: The expression of miR-425-5p in MSC was detected by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). Cell proliferation, cell cycle and apoptosis were detected by CCK-8 colorimetry and flow cytometry. The expression of TNF were detected by ELISA. RESULTS: Our data show that MiR-425-5p could modulate TNF-induced cell apoptosis, proliferation, and differentiation. ANXA2 is also the target of miR-425-5p and ANXA2 was involved in TNF-induced MSC cell apoptosis, proliferation, and differentiation. In addition, MiR-425-5p enhanced osteoporosis in mice. CONCLUSION: MiR-425-5p might serve as a potential therapeutic target for the treatment of osteoporosis.

6.
Genome Res ; 30(6): 898-909, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32540955

RESUMO

Long-range sequencing information is required for haplotype phasing, de novo assembly, and structural variation detection. Current long-read sequencing technologies can provide valuable long-range information but at a high cost with low accuracy and high DNA input requirements. We have developed a single-tube Transposase Enzyme Linked Long-read Sequencing (TELL-seq) technology, which enables a low-cost, high-accuracy, and high-throughput short-read second-generation sequencer to generate over 100 kb of long-range sequencing information with as little as 0.1 ng input material. In a PCR tube, millions of clonally barcoded beads are used to uniquely barcode long DNA molecules in an open bulk reaction without dilution and compartmentation. The barcoded linked-reads are used to successfully assemble genomes ranging from microbes to human. These linked-reads also generate megabase-long phased blocks and provide a cost-effective tool for detecting structural variants in a genome, which are important to identify compound heterozygosity in recessive Mendelian diseases and discover genetic drivers and diagnostic biomarkers in cancers.


Assuntos
Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA , Biologia Computacional/métodos , Código de Barras de DNA Taxonômico/métodos , Variação Genética , Genoma Humano , Genômica/métodos , Antígenos HLA/genética , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas , Fluxo de Trabalho
7.
Bioinformatics ; 35(14): i61-i70, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510642

RESUMO

MOTIVATION: The recently developed barcoding-based synthetic long read (SLR) technologies have already found many applications in genome assembly and analysis. However, although some new barcoding protocols are emerging and the range of SLR applications is being expanded, the existing SLR assemblers are optimized for a narrow range of parameters and are not easily extendable to new barcoding technologies and new applications such as metagenomics or hybrid assembly. RESULTS: We describe the algorithmic challenge of the SLR assembly and present a cloudSPAdes algorithm for SLR assembly that is based on analyzing the de Bruijn graph of SLRs. We benchmarked cloudSPAdes across various barcoding technologies/applications and demonstrated that it improves on the state-of-the-art SLR assemblers in accuracy and speed. AVAILABILITY AND IMPLEMENTATION: Source code and installation manual for cloudSPAdes are available at https://github.com/ablab/spades/releases/tag/cloudspades-paper. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Computação em Nuvem , Análise de Sequência de DNA , Software , Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica
8.
Methods Mol Biol ; 733: 93-103, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21431765

RESUMO

RNA-sequencing (RNA-Seq) is a digital display of a transcriptome using next-generation sequencing technologies and provides detailed, high-throughput view of the transcriptome. The first step in RNA-Seq is to isolate whole transcriptome from total RNA. Since large ribosomal RNA (rRNA) constitutes approximately 90% RNA species in total RNA, whole transcriptome analysis without any contamination from rRNA is very difficult using existing RNA isolation methods. RiboMinus(™) purification method provides a novel and efficient method to isolate RNA molecules of the transcriptome devoid of large rRNA from total RNA for transcriptome analysis. It allows for whole transcriptome isolation through selective depletion of abundant rRNA molecules from total RNA. The rRNA depleted RNA fraction is termed as RiboMinus(™) RNA fraction, which is enriched in polyadenylated RNA, nonpolyadenylated RNA, preprocessed RNA, tRNA, numerous regulatory RNA molecules, and other RNA transcripts of yet unknown function. Using RiboMinus(™) method to isolate RiboMinus RNA results in up to 99.0% removal of 16S and 23S rRNA molecules from 0.5 to 10 µg total bacterial RNA based on Bioanalyzer analysis. It enables efficient whole transcriptome sequencing analysis without major contamination from highly abundant rRNA. Residual rRNA accounts for less than 10% of entire transcriptome based on both SOLiD and Genome Analyzer RNA-Seq data.


Assuntos
Bactérias/genética , RNA Bacteriano/genética , RNA Ribossômico/genética , RNA Ribossômico/isolamento & purificação , Análise de Sequência de RNA/métodos , Precipitação Química , Etanol/química , Microesferas , Hibridização de Ácido Nucleico
9.
Nat Genet ; 42(10): 833-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20802477

RESUMO

We report a high-quality draft genome sequence of the domesticated apple (Malus × domestica). We show that a relatively recent (>50 million years ago) genome-wide duplication (GWD) has resulted in the transition from nine ancestral chromosomes to 17 chromosomes in the Pyreae. Traces of older GWDs partly support the monophyly of the ancestral paleohexaploidy of eudicots. Phylogenetic reconstruction of Pyreae and the genus Malus, relative to major Rosaceae taxa, identified the progenitor of the cultivated apple as M. sieversii. Expansion of gene families reported to be involved in fruit development may explain formation of the pome, a Pyreae-specific false fruit that develops by proliferation of the basal part of the sepals, the receptacle. In apple, a subclade of MADS-box genes, normally involved in flower and fruit development, is expanded to include 15 members, as are other gene families involved in Rosaceae-specific metabolism, such as transport and assimilation of sorbitol.


Assuntos
Duplicação Gênica , Genes de Plantas/genética , Genoma de Planta , Malus/genética , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Ligação Genética , Estudo de Associação Genômica Ampla , Malus/crescimento & desenvolvimento , Filogenia
10.
Science ; 318(5849): 420-6, 2007 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-17901297

RESUMO

Structural variation of the genome involves kilobase- to megabase-sized deletions, duplications, insertions, inversions, and complex combinations of rearrangements. We introduce high-throughput and massive paired-end mapping (PEM), a large-scale genome-sequencing method to identify structural variants (SVs) approximately 3 kilobases (kb) or larger that combines the rescue and capture of paired ends of 3-kb fragments, massive 454 sequencing, and a computational approach to map DNA reads onto a reference genome. PEM was used to map SVs in an African and in a putatively European individual and identified shared and divergent SVs relative to the reference genome. Overall, we fine-mapped more than 1000 SVs and documented that the number of SVs among humans is much larger than initially hypothesized; many of the SVs potentially affect gene function. The breakpoint junction sequences of more than 200 SVs were determined with a novel pooling strategy and computational analysis. Our analysis provided insights into the mechanisms of SV formation in humans.


Assuntos
Variação Genética , Genoma Humano , Mutação , Inversão Cromossômica , Mapeamento Cromossômico , Biologia Computacional , Feminino , Fusão Gênica , Humanos , Mutagênese Insercional , Análise de Sequência com Séries de Oligonucleotídeos , Recombinação Genética , Sequências Repetitivas de Ácido Nucleico , Retroelementos , Análise de Sequência de DNA , Deleção de Sequência
11.
Nature ; 437(7057): 376-80, 2005 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16056220

RESUMO

The proliferation of large-scale DNA-sequencing projects in recent years has driven a search for alternative methods to reduce time and cost. Here we describe a scalable, highly parallel sequencing system with raw throughput significantly greater than that of state-of-the-art capillary electrophoresis instruments. The apparatus uses a novel fibre-optic slide of individual wells and is able to sequence 25 million bases, at 99% or better accuracy, in one four-hour run. To achieve an approximately 100-fold increase in throughput over current Sanger sequencing technology, we have developed an emulsion method for DNA amplification and an instrument for sequencing by synthesis using a pyrosequencing protocol optimized for solid support and picolitre-scale volumes. Here we show the utility, throughput, accuracy and robustness of this system by shotgun sequencing and de novo assembly of the Mycoplasma genitalium genome with 96% coverage at 99.96% accuracy in one run of the machine.


Assuntos
Genoma Bacteriano , Genômica/instrumentação , Microquímica/instrumentação , Mycoplasma genitalium/genética , Análise de Sequência de DNA/instrumentação , Eletroforese Capilar , Emulsões , Tecnologia de Fibra Óptica , Genômica/economia , Microquímica/economia , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA/economia , Fatores de Tempo
12.
Int J Dev Neurosci ; 23(5): 465-74, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15979267

RESUMO

Patients with severe deficiency of methylenetetrahydrofolate reductase (MTHFR) suffer from a wide variety of neurological problems, which can begin in the neonatal period. MTHFR is a critical enzyme in folate metabolism; the product of the MTHFR reaction, 5-methyltetrahydrofolate, is required for homocysteine remethylation to methionine and synthesis of S-adenosylmethionine (SAM). To understand the mechanisms by which MTHFR deficiency leads to significant neuropathology, we examined early postnatal brain development in mice with a homozygous knockout of the Mthfr gene. These mice displayed a dramatically reduced size of the cerebellum and cerebral cortex, with enlarged lateral ventricles. Mthfr deficiency affected granule cell maturation, but not neurogenesis. Depletion of external granule cells and disorganization of Purkinje cells were mainly confined to the anterior lobules of mutant cerebella. Decreased cellular proliferation and increased cell death contributed to the granule cell loss. Reduced expression of Engrailed-2 (En2), Reelin (Reln) and inositol 1,4,5-triphosphate receptor type 1 (Itpr1) genes was observed in the cerebellum. Supplementation of Mthfr(+/-) dams with an alternate methyl donor, betaine, reduced cerebellar abnormalities in the Mthfr(-/-) pups. Our findings suggest that MTHFR plays a role in cerebellar patterning, possibly through effects on proliferation or apoptosis.


Assuntos
Animais Recém-Nascidos , Cerebelo/anormalidades , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Animais , Apoptose , Betaína/administração & dosagem , Betaína/farmacologia , Padronização Corporal/genética , Peso Corporal/efeitos dos fármacos , Encéfalo/anormalidades , Encéfalo/patologia , Divisão Celular , Movimento Celular , Cerebelo/patologia , Cerebelo/fisiopatologia , Feminino , Expressão Gênica , Camundongos , Camundongos Knockout , Neurônios/patologia , Tamanho do Órgão/efeitos dos fármacos , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Proteína Reelina
13.
J Nutr ; 134(11): 2975-8, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15514261

RESUMO

Methylenetetrahydrofolate reductase (MTHFR) catalyzes the synthesis of 5-methyltetrahydrofolate (5-methylTHF), which is used for homocysteine remethylation to methionine, the precursor of S-adenosylmethionine (SAM). Impairment of MTHFR will increase homocysteine levels and compromise SAM-dependent methylation reactions. Mild MTHFR deficiency is common in many populations due to a polymorphism at bp 677. To assess how impaired MTHFR activity affects folate metabolism in various tissues in vivo, we used affinity/HPLC with electrochemical detection to analyze the distribution of folates in plasma, liver, and brain of Mthfr-deficient mice. The most pronounced difference in total folate was observed in plasma. In Mthfr -/- mice, plasma total folate levels were approximately 25% of those in wild-type (Mthfr +/+) mice. Only 40% of plasma folate in Mthfr -/- mice was comprised of 5-methylTHF, compared with at least 80% in the other 2 genotype groups. In liver and brain, there were no differences in total folate. However, the proportion of 5-methylTHF in both tissues was again markedly reduced in mice with the Mthfr -/- genotype. In this genotype group, 5-methylTHF is likely derived from the diet. Our study demonstrated reduced total circulatory folate and altered distribution of folate derivatives in liver and brain in Mthfr deficiency. Decreased methylfolates and increased nonmethylfolates would affect the flux of one-carbon units between methylation reactions and nucleotide synthesis. This altered flux has implications for several common disorders, including cancer and vascular disease.


Assuntos
Ácido Fólico/análise , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Animais , Química Encefálica , Cromatografia Líquida de Alta Pressão , Ácido Fólico/sangue , Fígado/química , Metilação , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/fisiologia , Camundongos , Camundongos Knockout , Tetra-Hidrofolatos/análise , Distribuição Tecidual
14.
Biochem J ; 382(Pt 3): 831-40, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15217352

RESUMO

MTHFR (methylenetetrahydrofolate reductase) catalyses the synthesis of 5-methyltetrahydrofolate, the folate derivative utilized in homocysteine remethylation to methionine. A severe deficiency of MTHFR results in hyperhomocysteinaemia and homocystinuria. Betaine supplementation has proven effective in ameliorating the biochemical abnormalities and the clinical course in patients with this deficiency. Mice with a complete knockout of MTHFR serve as a good animal model for homocystinuria; early postnatal death of these mice is common, as with some neonates with low residual MTHFR activity. We attempted to rescue Mthfr-/- mice from postnatal death by betaine supplementation to their mothers throughout pregnancy and lactation. Betaine decreased the mortality of Mthfr-/- mice from 83% to 26% and significantly improved somatic development from postnatal day 1, compared with Mthfr-/- mice from unsupplemented dams. Biochemical evaluations demonstrated higher availability of betaine in suckling pups, decreased accumulation of homocysteine, and decreased flux through the trans-sulphuration pathway in liver and brain of Mthfr-/- pups from betaine-supplemented dams. We observed disturbances in proliferation and differentiation in the cerebellum and hippocampus in the knockout mice; these changes were ameliorated by betaine supplementation. The dramatic effects of betaine on survival and growth, and the partial reversibility of the biochemical and developmental anomalies in the brains of MTHFR-deficient mice, emphasize an important role for choline and betaine depletion in the pathogenesis of homocystinuria due to MTHFR deficiency.


Assuntos
Betaína/uso terapêutico , Homocistinúria/tratamento farmacológico , Homocistinúria/enzimologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/deficiência , Animais , Animais Lactentes/metabolismo , Betaína/metabolismo , Peso Corporal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Modelos Animais de Doenças , Feminino , Genótipo , Homocisteína/metabolismo , Homocistinúria/embriologia , Homocistinúria/genética , Lactação/metabolismo , Fígado/efeitos dos fármacos , Masculino , Troca Materno-Fetal , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Camundongos , Camundongos Knockout , Tamanho do Órgão/efeitos dos fármacos , Gravidez
15.
FASEB J ; 17(3): 512-4, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12551843

RESUMO

Hyperhomocysteinemia, a proposed risk factor for cardiovascular disease, is also observed in other common disorders. The most frequent genetic cause of hyperhomocysteinemia is a mutated methylenetetrahydrofolate reductase (MTHFR), predominantly when folate status is impaired. MTHFR synthesizes a major methyl donor for homocysteine remethylation to methionine. We administered the alternate choline-derived methyl donor, betaine, to wild-type mice and to littermates with mild or severe hyperhomocysteinemia due to hetero- or homozygosity for a disruption of the Mthfr gene. On control diets, plasma homocysteine and liver choline metabolite levels were strongly dependent on the Mthfr genotype. Betaine supplementation decreased homocysteine in all three genotypes, restored liver betaine and phosphocholine pools, and prevented severe steatosis in Mthfr-deficient mice. Increasing betaine intake did not further decrease homocysteine. In humans with cardiovascular disease, we found a significant negative correlation between plasma betaine and homocysteine concentrations. Our results emphasize the strong interrelationship between homocysteine, folate, and choline metabolism. Hyperhomocysteinemic Mthfr-compromised mice appear to be much more sensitive to changes of choline/betaine intake than do wild-type animals. Hyperhomocysteinemia, in the range of that associated with folate deficiency or with homozygosity for the 677T MTHFR variant, may be associated with disturbed choline metabolism.


Assuntos
Betaína/uso terapêutico , Homocisteína/sangue , Hiper-Homocisteinemia/tratamento farmacológico , Oxirredutases/genética , Animais , Betaína/análise , Betaína/farmacologia , Doenças Cardiovasculares/sangue , Colina/metabolismo , Relação Dose-Resposta a Droga , Feminino , Genótipo , Humanos , Hiper-Homocisteinemia/sangue , Hiper-Homocisteinemia/metabolismo , Fígado/química , Masculino , Metilenotetra-Hidrofolato Desidrogenase (NAD+) , Camundongos , Camundongos Knockout , Modelos Biológicos , Oxirredutases/deficiência , Oxirredutases/metabolismo , Fosforilcolina/análise
16.
Brain Res Gene Expr Patterns ; 1(2): 89-93, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15018804

RESUMO

Methylenetetrahydrofolate reductase (MTHFR) deficiency is the most common genetic cause of hyperhomocysteinemia, which is associated with increased risk for cardiovascular disease, stroke and possibly other neurological disorders. Microarray analysis of brain RNA from day 14 Mthfr(-/-) mice revealed several genes with altered expression. Expression changes in inositol 1,4,5-triphosphate receptor, type 1 (Itpr1), proteolipid protein (Plp), neurogenic differentiation factor 1 (Neurod1), S100 calcium binding protein A8 (S100a8), and methylenetetrahydrofolate dehydrogenase (NAD+ dependent), methenyltetrahydrofolate cyclohydrolase (Mthfd2) were confirmed by RT-PCR. We propose that neuronal damage by hyperhomocysteinemia may involve disruption of intracellular calcium.


Assuntos
Encéfalo/metabolismo , Hiper-Homocisteinemia/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA/metabolismo , Actinas/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Cálcio/metabolismo , Canais de Cálcio/biossíntese , Calgranulina A/biossíntese , Etiquetas de Sequências Expressas , Heterozigoto , Receptores de Inositol 1,4,5-Trifosfato , Meteniltetra-Hidrofolato Cicloidrolase/biossíntese , Metilação , Metilenotetra-Hidrofolato Desidrogenase (NADP)/biossíntese , Camundongos , Camundongos Endogâmicos BALB C , Proteína Proteolipídica de Mielina/biossíntese , Proteínas do Tecido Nervoso/biossíntese , Neurônios/metabolismo , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores de N-Metil-D-Aspartato/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...